
Roboocyte2 Scripting

iii

Table of Contents

1 Introduction 5
1.1 Java Script 5

1.1.1 Roboocyte2 Specific Features 5
1.1.2 Oocyte Loop 5

1.2 Variables 5
1.2.1 JavaScript Variables 5
1.2.2 User Defined Interactive Variables 6
1.2.3 Predefined Variables 6
1.2.4 Read-only Variables 7

1.3 Complete List of Commands 9
1.3.1 Conditions 9
1.3.2 Robo2. GUI-Commands 10
1.3.3 Robo2. Variable Handling Commands 10
1.3.4 Robo2. Movement Commands 11
1.3.5 Robo2. Amplifier and Data Acquisition Commands 12
1.3.6 Robo2. Data Analysis Commands 13
1.3.7 Robo2. Database Commands 14
1.3.8 Robo2. Timing Commands 15
1.3.9 Robo2. Liquid Handling (Roboflow) Commands 15
1.3.10 Robo2. High Level Commands 16
1.3.11 RecDisplay. Recording Display Commands 17
1.3.12 ControlDisplay. Control Display Command 17
1.3.13 Gilson. Gilson Commands 18

2 Example Script "Dose-Response" 19
2.1 Defining Dialogue variables 19

2.1.1 User Defined Dialogue Variables 19
2.1.2 Working with Pre-defined Variables 20

2.2 The Oocyte Loop 21
2.3 Standard Routines executed before Recording Protocol 22

2.3.1 Moving the Measuring Head into Liquid 22
2.3.2 Switching to Current Clamp Mode 23
2.3.3 Electrode Offset Compensation 23
2.3.4 Electrode Resistance Test 23
2.3.5 Oocyte Impalement 24
2.3.6 Starting Voltage Clamp Mode 25
2.3.7 Initial Leak Current Test 25
2.3.8 Final Leak Current Test with Perfusion 26

3 Recording Protocol Examples 27
3.1 Using the Dose-Response Script as a Template 27
3.2 Ligand-gated Channels and Electrogenic Transporters 27

3.2.1 Expression Test 27
3.2.2 Dose-Response Protocol 29

3.3 Voltage-gated Ion Channels 30
3.3.1 Expression Test 30

4 Using the Gilson Liquid Handler 33
4.1 Movement Commands 33
4.2 Peristaltic Pump Commands 33

Roboocyte2 Manual

iv

4.3 Transfer Port Valve Commands 33
4.4 Examples 34

4.4.1 Differences between Roboflow and Gilson 34
4.4.2 Solution Exchange - Roboflow vs. Gilson 34
4.4.3 Handling of the Gilson Delay 35

5

1 Introduction

1.1 Java Script

Roboocyte2 scripts are written in a JavaScript like language. The syntax (control
structures, variables, functions, arrays) is conforming to JavaScript, other
JavaScript functionality, particularly the document (and other HTML specific
things like DOM handling, libraries etc.) is NOT supported.

1.1.1 Roboocyte2 Specific Features

The Roboocyte2 is controlled via 4 JavaScript objects:

1. Robo2 (the robot hardware)

2. RecDisplay (display of the recordings)

3. ControlDisplay (display of control recordings)

4. Gilson (Gilson liquid handler if applicable)

The commands for each object are listed in the tables below.

1.1.2 Oocyte Loop

In order to record from selected oocytes, functions must be executed within the
so called oocyte loop . The array variable SelectedWells contains the indices of
these wells and can be used in a for loop, e.g.

for (var i = 0; i < Robo2.SelectedWells.Count; i++)

{
var WellIndex = Robo2.SelectedWells[i];
Robo2.Log("now moving to well: " + Robo2.SelectedWellNames[i]);
Robo2.MoveToWell(WellIndex);
}

1.2 Variables

Variables come in different flavors:

1.2.1 JavaScript Variables

Variables can be created with the JavaScript keyword var . These variables can be
used as in standard JavaScript to store values and use them later in the script.

var test = 1

generates a variable "test" with the value "1"

Roboocyte2 Manual

6

1.2.2 User Defined Interactive Variables

There are also user defined interactively changeable variables. These variable are
defined by the command SetDialogVariable.

Robo2.SetDialogVariable("clampvoltage", -60, "Recording Voltage in mV");

generates the variable "clampvoltage" with the value -60. The comment
"Recording Voltage in mV" will help you to identify the meaning of the variable
when opening the dialog.

To interactively display and change the values the command ShowDialog() is
used.

1.2.3 Predefined Variables

Some values which are important for the use of the Roboocyte2 are predefined
(they do not have to be defined via var). These variables can be changed in the
script source and also interactively via display of a dialog during script execution.
Some of these variables are used as parameters in the high level commands, so
that a script can be easily parameterized in the dialog without having to change
the script source code.

All of these variables are of type int.

The syntax to set the values in the source is as follows: The command is a
function call which starts with Set_ and then the variable name (in upper case) is
appended, e.g.

Set_DCOFFSET_RANGE(5);

which will assign the value 5 to the variable DCOFFSET_RANGE

To interactively display and change variable values the command
ShowStandardDialog() is used.

List of all predefined variables, their default values, and respective
command

Variable Default Description

Robo2.ResistanceCheck_I(MIN_RESISTANCE_I, MAX_RESISTANCE_I)
Robo2.ResistanceCheck_U(MIN_RESISTANCE_U, MAX_RESISTANCE_U)

MIN_RESISTANCE_I 100 Ohm
minimum TEVC probe resistance
of the I electrode

MAX_RESISTANCE_I 1000 Ohm
maximum TEVC probe
resistance of the I electrode

MIN_RESISTANCE_U 100 Ohm
minimum TEVC probe resistance
of the U electrode

MAX_RESISTANCE_U 1000 Ohm
maximum TEVC probe
resistance of the U electrode

Robo2.DCOffsetCorrection(DCOFFSET_RANGE, DCOFFSET_DELAY,
DCOFFSET_WAIT, DCOFFSET_ATTEMPTS)

DCOFFSET_RANGE 3 mV
max deviation of DC offset
from 0

DCOFFSET_DELAY 20 sec
delay before DC offset
measurement

DCOFFSET_WAIT 10 sec wait after each check
DCOFFSET_ATTEMPTS 3 number of attempts to try DC

7

offset check
Robo2.Impale(MIN_RMP, IMPALEMENT_STEPS, IMPALEMENT_STEP,

IMPALEMENT_WAIT)
MIN_RMP -15 mV minimum membrane potential
IMPALEMENT_STEPS_I 6 number of z axis steps to move

down during impalement of
the I electrode

IMPALEMENT_STEPS_U 2 number of z axis steps to move
down during impalement of
the U electrode

IMPALEMENT_STEPS 8 maximum number of z axis
steps to move down during
impalement

IMPALEMENT_STEP 50 µm step size of impalement step
IMPALEMENT_WAIT 2 sec wait after each z axis step

Robo2.InitialLeakCurrentCheck(MIN_INITIAL_LEAKCURRENT,
MAX_INITIAL_LEAKCURRENT)

MIN_INITIAL_LEAKCURRENT -10000 nA minimum leak current for initial
check

MAX_INITIAL_LEAKCURRENT 200 nA maximum leak current for
initial check

Robo2.LeakCurrentCheck(MIN_LEAKCURRENT, MAX_LEAKCURRENT,
LEAKCURRENT_ATTEMPTS, LEAKCURRENT_WAIT)

MIN_LEAKCURRENT -1000 nA minimum leak current for
second check

MAX_LEAKCURRENT 100 nA maximum leak current for
second check

LEAKCURRENT_WAIT 10 wait after each check [sec]
LEAKCURRENT_ATTEMPTS 3 number of attempts to try leak

current check

Robo2.SetAmplifierCoefficients(AMPLIFIER_GAIN_P, AMPLIFIER_GAIN_I)

AMPLIFIER_GAIN_P 1000 nA/mV proportional coefficient 0 -
6000

AMPLIFIER_GAIN_I 100 1/s integral coefficient 0 - 1000

Robo2.SetSampleRate(SAMPLERATE);
Robo2.SetControlSampleRate(CONTROL_SAMPLERATE);

SAMPLERATE 1000 Hz recording sample rate 1 - 20000
CONTROL_SAMPLERATE 10 Hz control recording sample rate 1

- 20000

Important note: These predefined variables are not active until they are
explicitly used in a script command. E.g., when the SAMPLERATE variable is set to
10000, this sample rate is only used when the script command
Robo2.SetSampleRate(SAMPLERATE) is executed.

Likewise, if the SAMPLERATE parameter is set to 10000, but the script command
is Robo2.SetSampleRate(1000), the sample rate of 1000 is used for all recordings
in the script.

1.2.4 Read-only Variables

These are variables the values of which cannot be changed by the user but are
updated by the system.

Roboocyte2 Manual

8

Variable Robo2. Description

SelectedWells array of integer indices of the selected wells

SelectedWellNames array of strings of the names of the selected wells

VALUE last measured value (current or voltage)

VALUE_IC last measured current at the current electrode

VALUE_UC last measured voltage at the current electrode

VALUE_US setpoint voltage (command potential)

VALUE_UV last measured voltage at the voltage electrode

RESISTANCE_U current impedance of the U electrode

RESISTANCE_I current impedance of the U electrode

SCRIPT_FILE file name of current script

DATE_NOW current date (string) in the format yyyy-mm-dd, e.g.
2011-10-18

TIME_NOW current time (string) in the format hh:mm:ss, e.g.
14:18:22, (Roboocyte2 V >= 1.1.5)

MINIMUM minimum calculated value in the analysis ROI (to be used
after a recording is finished

POS_MINIMUM position of the calculated minimum

MAXIMUM minimum calculated value in the analysis ROI

POS_MAXIMUM position of the calculated maximum

AVERAGE calculated average value in the analysis ROI

AREA calculated area in the analysis ROI

BASELINE_AVERAGE calculated baseline average in the baseline ROI

SCRIPT_FILE name of the actual script file

TIME the number of minutes passed since the last

TIME_S the number of seconds passed since the last StartTimer
command

ALIGNMENT_X alignment x position in µm

ALIGNMENT_Y alignment y position in µm

ALIGNMENT_Z alignment z position in µm

9

1.3 Complete List of Commands

1.3.1 Conditions

Some Commands can be used only under certain conditions:

• O+ must be within oocyte loop

• O- not within oocyte loop

• W+ must be with carrier set to a well

• L+ must be with z-axis moved into liquid

• Oo+ must be with z-axis moved into oocyte

• Oo- must be with z-axis moved into oocyte

• R+ must be within a recording

• R- not within a recording

Data types in Parameters:

• string: a text value, can either be a variable or a literal within double quotes (e.g. „this is a string“)

• int: an integer number (-5, 4, 5689, but not 1.4)

• bool: true or false

• --- no parameter needed

Some commands give back a return value or function as described

R: return value of function

Roboocyte2 Manual

10

1.3.2 Robo2. GUI-Commands

Robo2. Parameter(s) Action Cond. Example Script

Log("x") string Plots the message "x" in the Log window --- Messages_eg.js

Information("x") string Opens a dialog with "x". Script execution is suspended until OK is pressed R- Messages_eg.js

Question("x") string

Opens a dialog with "x". Different control paths in the script can be executed
by using the return value of the function.

The return value is true if Yes was clicked, false otherwise

R- Messages_eg.js

1.3.3 Robo2. Variable Handling Commands

Robo2. Parameter(s) Action Cond. Example Script

SetDialogVariable(x, y, z)

string: x = name

int: y = value

string: z = description

defines and sets a value to a variable that can be changed
interactively by a dialog during script execution (ShowDialog)

--- Variables_eg.js

ShowDialog() ---
shows dialog to check and change values for variables defined
with SetDialogVariable()

R- Variables_eg.js

ShowStandardDialog() ---
shows dialog to check and change values for the predefined
(standard) variables

R- Variables_eg.js

11

1.3.4 Robo2. Movement Commands

Robo2. Parameter(s) Action Cond. Example Script

MoveToWell(x) int: well number moves carrier to given well x, with x from 0 to 95 R- Movement_eg.js

MoveToHomePos() --- moves Z-axis and carrier to Home-Position R- Movement_eg.js

MoveToParkPos() --- moves Z-axis and carrier to Park-Position R- Movement_eg.js

MoveToChangePlatePos() --- moves Z-axis up and carrier to a position to change the plate R- Movement_eg.js

MoveToCoarsePos() --- moves Z-axis and carrier to coarse position R- Movement_eg.js

ZMoveToLiquid() --- moves Z-axis into the liquid z-height R- Movement_eg.js

ZMoveHome() --- move Z-axis to uppermost position R- Movement_eg.js

ZMoveToOocyte() --- moves Z-axis into the oocyte z-height R- Movement_eg.js

ZMoveStepDown(x) int: 0 - 100 moves the z-axis down by x µm --- ---

ZMoveStepUp(x) int: 0 - 100 moves the z-axis stepwise up by x µm --- ---

SetAxisLight() --- turns the white LED at the axis on or off --- ---

GetAxisLight() --- returns true if light is on --- ---

ReferenceXY() --- performs a reference movement of the carrier R- ---

ReferenceZ() --- performs a reference movement of the z-axis R- ---

Roboocyte2 Manual

12

1.3.5 Robo2. Amplifier and Data Acquisition Commands

Robo2. Parameter(s) Action Cond. Example Script

SetHoldingVoltage(x) int: voltage in mV sets clamp voltage to x mV --- Acquisition_eg.js

SetVoltageClamp() --- sets amplifier to voltage clamp mode --- Acquisition_eg.js

SetHoldingCurrent(x) int: current in nA sets clamp current to x nA --- Acquisition_eg.js

SetCurrentClamp() --- sets amplifier to current clamp mode --- Acquisition_eg.js

SetAmplifierCoefficients(x, y)
int: x = proportional gain

int: y = integral gain
sets proportional and integral gain --- Acquisition_eg.js

SetSampleRate(x) int: samplerate sets sample rate to x Hz for recordings R- Acquisition_eg.js

StartRecording() --- starts data acquisition and recording of data R- Acquisition_eg.js

StopRecording() --- stops data acquisition R+ Acquisition_eg.js

SetControlSampleRate(x) int: sample rate sets control recording sample rate to x Hz (1-50) R- Acquisition_eg.js

StartControlRecording() ---
starts data acquisition, displayed in control window
(not saved to file)

R- Acquisition_eg.js

StopControlRecording() --- stops control recording R+ Acquisition_eg.js

RecordIVProtocol(x) string: protocol name executes the predefined IV protocol x O+, R- Acquisition_eg.js

13

1.3.6 Robo2. Data Analysis Commands

Robo2. Parameter(s) Action Cond. Example Script

SetBaselineROI(x,y)
int: x = left in s

int: y = right in s

sets the region of interest (ROI) used for the baseline
calculation.

--- Data_eg.js

SetBaselineROIMilliSec(x,y)
int: x = left in ms

int: y = right in ms

sets the region of interest (ROI) used for the baseline
calculation.

--- ---

SetDriftCorrectionROI(x,y)
int: x = left in s

int: y = right in s

sets the left and right cursor positions used to calculate
the drift correction.

--- Data_eg.js

SetDriftCorrectionROIMilliSec(x,y)
int: x = left in ms

int: y = right in ms

sets the left and right cursor positions used to calculate
the drift correction.

--- ---

SetAnalysisROI(x,y)
int: x = left in s

int: y = right in s

sets the region of interest (ROI) from which results are
calculated

--- Data_eg.js

SetAnalysisROIMilliSec(x,y)
int: x = left

int: y = right in ms

sets the region of interest (ROI) from which results are
calculated

--- ---

Roboocyte2 Manual

14

1.3.7 Robo2. Database Commands

Robo2. Parameter(s) Action Cond. Example Script

TransmitRecording(x)

REC_TAG_VOLTAGE,
REC_TAG_COMPOUND,

REC_TAG_REF_VOLTAGE,
REC_TAG_REF_COMPOUND

Writes recording tag to database.

REC_TAG_REF_COMPOUND: not used for
generating DR curves

REC_TAG_COMPOUND: used for generating DR
curves

R+ valves_tags_eg.js

TransmitVoltage(x) int: value
writes voltage value for the current recording to the
database

R+

TransmitCompoundValve(x) int: valve number writes the valve number to the database R+ valves_tags_eg.js

TransmitCompoundGilson(x,y)
int: x = slot

int: y = tube

writes the Gilson slot/tube information to the
database

R+ ---

SetWellInfo(x,y)
string: x = key

string: y = value

writes any user defined text to the database. Can be
used to write additional information, e.g. value of
electrode resistance or leak current to the database

W+ ---

SetRecordingSeries(x) int: series number

writes a series number to the database, valid for all
following recordings. If one trace of the series is
selected in Roboocyte2+, all other traces from the
series are automatically used for plotting the dose-
response curve.

R- ---

15

1.3.8 Robo2. Timing Commands

Robo2. Parameter(s) Action Cond. Example Script

Wait(x) int: time waits for x seconds before executing the next command ---

WaitMilliSec(x) int: time waits for x milliseconds before executing the next command ---

StartTimer() --- starts timer, see also variables TIME and TIME_S ---

WaitForTimer(x) int: time waits until x seconds from timer start have been passed. ---

1.3.9 Robo2. Liquid Handling (Roboflow) Commands

Robo2. Parameter(s) Action Cond. Example Script

OpenValve(x) int: valve number opens valve x, valve index must be 1 ... 12 --- valves_tags_eg.js

CloseAllValves() --- closes all valves --- valves_tags_eg.js

WastePumpOn(x) int: speed turns waste pump on, speed x must be between 0 and 20000 --- valves_tags_eg.js

WastePumpOff() --- turns off waste pump --- valves_tags_eg.js

IsWastePumpOn() R: bool returns true if waste pump is on --- ---

ValvePumpOn(x) int: speed turns valve pump on, speed x must be between 0 and 10000 --- valves_tags_eg.js

ValvePumpOff() --- turns off valve pump --- valves_tags_eg.js

IsValvePumpOn() R: bool returns true if valve pump is on --- ---

Roboocyte2 Manual

16

1.3.10 Robo2. High Level Commands

Robo2. Parameter(s) Action Cond. Example Script

ResistanceCheck_I(a,b)

a = MIN_RESISTANCE_I

b = MAX_RESISTANCE_I

R: bool

checks if the resistance of the current
electrode is between min and max (kOhm),
returns true if this was the case

L+ HL-commands_eg.js

ResistanceCheck_U(a,b)

a = MIN_RESISTANCE_U

b = MAX_RESISTANCE_U

R: bool

checks if the resistance of the voltage
electrode is between min and max (kOhm),
returns true if this was the case

L+
HL-commands_eg.js

DCOffsetCorrection(a,b,c,d)

a = DCOFFSET_RANGE

b = DCOFFSET_DELAY

c = DCOFFSET_WAIT

d = DCOFFSET_ATTEMPTS

R: bool

checks if the offset of the I and U electrodes is
within the range given by range (mV)

delay: initial delay to wait until junction
potential is established in seconds

wait: wait time between repeats in seconds

attempts: number of repeats.

L+

HL-commands_eg.js

Impale(a,b,c,d)

a = MIN_RMP

b = IMPALEMENT_STEPS

c = IMPALEMENT_STEP

d = IMPALEMENT_WAIT

R: bool

Impalement procedure

MIN_RMP: minimum membrane potential

IMPALEMENT_STEPS: maximum number of
steps to "find" MIN_RMP on both electrodes

IMPALEMENT_STEP: single step size in µm
IMPALEMENT_WAIT: wait time in seconds
between steps

returns true if impalement was successful

W+
HL-commands_eg.js

InitialLeakCurrentCheck(a,b)

a = MIN_INITIAL_LEAKCURRENT

b = MAX_INITIAL_LEAKCURRENT

R: bool

initial leak current test, returns true if the
measured leak current is between min and max
(nA)

Oo+ HL-commands_eg.js

LeakCurrentCheck(a,b,c,d)

a = MIN_LEAKCURRENT

b = MAX_LEAKCURRENT

c = LEAKCURRENT_WAIT

d = LEAKCURRENT_ATTEMPTS

R: bool

leak current test, returns true if the measured
leak current is between min and max (nA).
Waits c seconds before determining the leak
current and retries d times

Oo+ HL-commands_eg.js

17

1.3.11 RecDisplay. Recording Display Commands

RecDisplay. Parameter(s) Action Cond. Example Script

Clear() --- clears the recording display --- valves_tags_eg.js

SetMode(x)
x = DISP_SINGLE
or
DISP_OVERLAY

sets recording display to overlay or single trace mode --- ---

SetXAxis(x,y)
int: min

int: max
sets x-axis range from min to max in seconds --- valves_tags_eg.js

SetXAxisMilliSec(x,y)
int: min

int: max
sets x-axis range from min to max in milliseconds --- ---

SetYAxis(x,y)
int: min

int: max
set y axis range from min to max in nA --- ---

ZoomToFitX() --- zooms the time axis to the actual data trace --- Acquisition_eg.js

ZoomToFitY() --- zooms the current axis to the actual data trace --- ---

RecDisplay.TrackYMax(x); bool: true or false true or false switches the maximum current tracking on or off --- valves_tags_eg.js

RecDisplay.TrackYMin(x); bool: true or false true or false switches the minimum current tracking on or off --- valves_tags_eg.js

1.3.12 ControlDisplay. Control Display Command

ControlDisplay. Parameter(s) Action Cond. Example Script

Clear() --- clears the control display --- ---

SetXAxis(x,y)

int: min

int: max
sets x-axis range from min to max in seconds --- valves_tags_eg.js

SetYAxis_I(x,y)

int: min

int: max
sets current axis range from min to max in seconds --- valves_tags_eg.js

SetYAxis_U(x.y)
int: min

int: max
sets voltage axis range from min to max in seconds --- valves_tags_eg.js

ZoomToFitX() --- zooms the time axis to the actual data trace --- ---

ZoomToFitY_U() --- zooms the voltage axis to the actual data trace --- ---

Roboocyte2 Manual

18

1.3.13 Gilson. Gilson Commands

Gilson. Parameter(s) Action Cond. Example Script

MoveToTube(x,y)
int: x = slot

int: y= tube
moves to tube in slot 1 .. 5, tube depending on selected rack ---

MoveToPort(x) int: port number (1 or 2) moves to transfer ports ---

MoveToRinse() --- moves to the rinse station ---

MoveToDrain() --- moves to the drain station ---

MoveUp() --- moves the Gilson probe up ---

MoveHome() --- moves all to home position ---

Reset() --- resets the Gilson ---

PumpBackward(x) int: speed starts Gilson peristaltic pump in backward direction with speed x ---

PumpForward(x) int: speed starts Gilson peristaltic pump in forward direction with speed x ---

Gilson.PumpStop() --- stops Gilson peristaltic pump ---

Valve1On() --- opens valve 1 from transfer port ---

Valve1Off() --- closes valve 1 from transfer port ---

Valve2On() --- opens valve 2 from transfer port ---

Valve2Off() --- closes valve 1 from transfer port ---

Appendix

19

2 Example Script "Dose-Response"

In the following chapter, you will learn how a typical recording script is built. As an example we
will use the script: "dose-response.js" which can be found on the Roboocyte Setup CD. Another
example script which can be found on the Roboocyte CD is the script "standard_procedures.js".
This script only includes the protocol independent part without the recording protocol part and
without user-defined variables

The following chapters describe a typical recording protocol sequence step-by-step:

1. Defining variables and parameter uses in the script

2. Starting the oocyte loop

 3. Compensating electrode DC voltage offsets

4. Testing electrode resistance and voltage offsets

5. Oocyte impalement

6. Starting voltage-clamp and leak-current test

7. Executing the experimental protocol

8. Continue with next selected oocyte

2.1 Defining Dialogue variables

2.1.1 User Defined Dialogue Variables

The first part in a script should be used to define all necessary variables, such as holding potential,
incubation times, number of used valves etc. If these parameters are defined as dialogue variables,
they can be easily modified in a dialogue before starting the script recording

The command for defining a user defined (dialogue) variable has the following format::

Robo2.SetDialogVariable("variable_name", variable value , "comment");

I.e. the command "Robo2.SetDialogVariable("pre_agonist_s", 5, "Time before agonist
application (s)"); creates the variable "pre_agonist_s" with the default value "5" and the
comment "Time before agonist application (s)"

The command "Robo2.ShowDialog();" opens a window after starting the script listing all user
defined variables. All values can be changed here, but are only valid for a single script execution.
Please note that whenever you start the script a second time, default values will be reloaded.

Roboocyte2 Manual

20

2.1.2 Working with Pre-defined Variables

Pre-defined variables are already existing variables with predefined default variable names and
values (see table in chapter 1.2.3).

Appendix

21

The command "Robo2.ShowStandardDialog();" opens a window after starting the script listing
all predefined variables. All values can be changed here, but again changes are not permanent
and only valid for a single script execution. If you want to change values "permanently" you have
to change them in the script text.

The next section in the script - Initialization - uses some of the predefined variables.

After defining variables and their respective values, the "oocyte loop" can be initiated.

2.2 The Oocyte Loop

The most basic function of the Roboocyte is to move the plate carrier "from one well to the
other", or more correct to move selected wells exactly below the measuring head. This movement
between well 1 and 95 is initiated and controlled by the so-called "oocyte loop", a for-loop in java
script.

Roboocyte2 Manual

22

The oocyte loop itself has only 4 lines (lines 89, 90, 91 and 105 in the example shown above),
but, before terminating the oocyte loop by the final curly bracket, do not forget to stop the valve
pump to avoid flooding (lines 101, 102 and 103)

2.3 Standard Routines executed before Recording Protocol

Before starting the recording of data, a number of steps and routines have to be started which
usually will not change for different kind of recording protocols.

2.3.1 Moving the Measuring Head into Liquid

The oocyte loop cares for incrementing the well number, the movement of carrier and z-axis have
to be controlled by specific commands.

Before moving the measuring head into liquid, one should switch the waste pump on to
guarantee a constant buffer level relative to the electrodes. This is important to avoid offset
artifacts during oocyte impalement.

Robo2.WastePumpOn(pumpspeed*ratio/100); starts the waste pump.

The waste pump "speed" is defined by the values for pumpspeed and ratio as defined before.

Robo2.MoveToWell(WellIndex); moves the carrier to the respective well.

Robo2.ZMoveToLiquid(); moves the z-axis down into the well.

The default liquid position can be changed in the Settings/Options menu of the Roboocyte
software (default is 2000 µm above the well bottom).

Appendix

23

2.3.2 Switching to Current Clamp Mode

After moving the electrodes into liquid, the amplifier is set to Current Clamp Mode.

Robo2.SetHoldingCurrent(0); sets holding current to 0 nA

Robo2.SetCurrentClamp(); sets the amplifier to current clamp mode

Before starting control recording, scaling of the Control Display axes is performed. Units are
seconds, mV and nA, respectively.

2.3.3 Electrode Offset Compensation

After starting current clamp, control recording is started in order to perform electrode offset
compensation, to determine electrode resistances, and to perform the impalement of the oocyte.

Control recording means that data are displayed in the Control Display, but not saved to disk.

Robo2.StartControlRecording() starts the control recording followed by the electrode offset
compensation.

The offset compensation for both electrodes is performed by executing the command

Robo2.DCOffsetCorrection(DCOFFSET_RANGE, DCOFFSET_DELAY, DCOFFSET_WAIT,
DCOFFSET_ATTEMPTS)

Variables for the offset compensation are by default the designated predefined variables, but you
can also use numbers, such as Robo2.DCOffsetCorrection(3, 10, 5, 3) (see table in chapter 1.2.3)
The command is embedded in an if-loop, controlling what happens after the compensation: If the
electrode offset compensation was successful the script proceeds, if not, the measuring head
moves to the next oocyte.

The if loop is terminated by "continue" if the electrode offset compensation fails. "Continue"
means that the script jumps back to the start of the respective loop (oocyte loop in this case).

2.3.4 Electrode Resistance Test

After compensating the electrode offsets, the resistance of both electrodes should be tested with
the command

Robo2.ResistanceCheck_I(MIN_RESISTANCE_I, MAX_RESISTANCE_I),

 where MIN_RESISTANCE and MAX_RESISTANCE are predefined variables (see table in chapter
1.2.3).

Roboocyte2 Manual

24

If the electrode resistances are within the range (between MIN_RESISTANCE and
MAX_RESISTANCE) the script proceeds; if not (else), the script breaks and continues with the
next oocyte.

Now, after completing electrode offset compensation, oocyte impalement can be started.

2.3.5 Oocyte Impalement

The oocyte impalement is performed by using the command:

Robo2.Impale(MIN_RMP, IMPALEMENT_STEPS, IMPALEMENT_STEP, IMPALEMENT_WAIT)

MIN_RMP, IMPALEMENT_STEPS, IMPALEMENT_STEP and IMPALEMENT_WAIT are predefined
variables (see table in chapter 1.2.3).

The impalement process is started by a movement of the z-axis to the default oocyte impalement depth

(default = 800 µm above the well plate bottom). Then n = IMPALEMENT_STEPS are performed with a

step size of ∆z = IMPALEMENT_STEP and a waiting time t = IMPALEMENT_WAIT between
individual steps.

Default values for IMPALEMENT_STEPS and IMPALEMENT_STEP are 8 and 50 µm, respectively.

Appendix

25

If the impalement was not successful, i.e. if the membrane potential U = MIN_RMP was not
reached after n = IMPALEMENT_STEPS steps with the step distance d = IMPALEMENT_STEP the
run is continued with the next oocyte. Before moving to the next oocyte pumps and valves should
be closed (lines 170 - 172). IMPALEMENT_WAIT is the waiting time between individual steps of
the z-axis in seconds.

If impalement was successful, the script continues after line 175. It usually makes sense to wait at
least for 10 seconds after impalement to give the oocyte membrane enough time to recover from
the impalement.

2.3.6 Starting Voltage Clamp Mode

After successful impalement, the recording can be continued under voltage clamp. Before, scaling
of the Control Display axes should be changed to meet the demands of the following Leak
Current Test under voltage clamp.

Robo2.SetHoldingVoltage(clampvoltage); sets the command voltage .

"clampvoltage" is a user defined variable created at the beginning of the script.

Robo2.SetVoltageClamp();sets the amplifier to voltage clamp mode.

2.3.7 Initial Leak Current Test

After starting voltage clamp, a control recording is started in order to perform the initial leak
current check.

The leak current check is started by the command

Robo2.InitialLeakCurrentCheck(MIN_INITIAL_LEAKCURRENT, MAX_INITIAL_LEAKCURRENT)

Roboocyte2 Manual

26

where MIN_INITIAL_LEAKCURRENT and MAX_INITIAL_LEAKCURRENT are predefined variables
with default values -10000 and +200, respectively. If the leak current is within the range the script
continues after line 209; if not, the run continues with the next selected oocyte. Again, commands
for stopping pumps and valves should be included (lines 205 - 207).

2.3.8 Final Leak Current Test with Perfusion

After the successful initial leak current check, i.e. if the oocyte is not completely leaky, the script
continues with the final leak current check. Although you can start this final check directly after
the initial leak current test, we recommend to start the buffer perfusion of the oocyte beforehand
in order to check the viability of the oocyte under perfusion.

Then, after a waiting time of 5 seconds, the final leak current check can be initiated by the
command

Robo2.LeakCurrentCheck(MIN_LEAKCURRENT, MAX_LEAKCURRENT,
LEAKCURRENT_ATTEMPTS, LEAKCURRENT_WAIT)

where MIN_LEAKCURRENT, MAX_LEAKCURRENT, LEAKCURRENT_ATTEMPTS and
LEAKCURRENT_WAIT are predefined variables. Default values for MIN_LEAKCURRENT and
MAX_LEAKCURRENT are -1000 nA and 100 nA, respectively. Default values for
LEAKCURRENT_ATTEMPTS and LEAKCURRENT_WAIT are 3 and 10 seconds, respectively. This
means that the leak current is determined up to 3 times with a waiting time of 10 seconds in
between.

As soon as the leak current is within the given limits, the script continues after line 237. if the cell
is still too leaky after 3 trials, the script continues with moving to the next well.

After successful leak test, the control recording has to be stopped, and the result of final leak test
can be sent into the log window.

Now, after finishing all necessary preparations and tests, the specific recording protocol can be
commenced.

Appendix

27

3 Recording Protocol Examples

3.1 Using the Dose-Response Script as a Template

The example script "dose-response.js" is a typical dose-response recording protocol which can
be used as a template for all kind of dose-response like protocols. The recording protocol specific
part is located between line 254 and 365.

The part of the script outside of "Protocol specific part starts here/ Protocol specific part stops
here" comment can be used as a starting-point for your own scripts.

3.2 Ligand-gated Channels and Electrogenic Transporters

The example script "dose-response.js" is a typical dose-response recording protocol for ligand-
gated ion channels. In addition, it can be used - after minor modifications - for electrogenic
transporters, such as Na-pump, GATs, EAATs etc.

3.2.1 Expression Test

Before you start a time and compound-consuming protocol on an oocyte, it makes sense to test
whether the expression i.e. the response to an agonist reference concentration is adequate.
Therefore, you should usually perform an expression test before continuing the protocol.

Before the expression test is started, it is mandatory to define the ranges of baseline ROI (Region
Of Interest) and analysis ROI, because these ROIs will be used for the calculation of the baseline
subtracted response for expression test. They will also be used for the later analysis in
Roboocyte2+. Although the ROI positions should be defined properly already in the script, they
can be changed later in Roboocyte2+.

The user-defined variables pre_agonist_s, agonist_s and recorded_washout_s used later for
controlling the recording time and solution exchange are also used for defining the ROIs and the
time axis scaling with the effect that ROI boundaries and axis change accordingly when you
change variable values at script start. If the ROI boundaries are coupled to these variables, they
automatically change whenever changes to these variables are made.

Example:

RecDisplay.SetXAxis(0, pre_agonist_s + agonist_s + recorded_washout_s);

Roboocyte2 Manual

28

Robo2.SetBaselineROI(pre_agonist_s - 3, pre_agonist_s - 1);

Robo2.SetAnalysisROI(pre_agonist_s, pre_agonist_s + agonist_s);

ControlDisplay.SetXAxis(0, pre_agonist_s + agonist_s + recorded_washout_s)

ControlDisplay.SetYAxis_I(-10000, 100)

Above JavaScript commands lead to durations listed in the following table.

 Example A Example B Example C

Variable values (s) 5/30/30 10/20/20 20/40/60

RecDisplay x-axis (s) 65 50 120

Baseline ROI (s) 2 - 4 7 - 9 17 - 19

Analysis ROI (s) 5 - 35 10 - 30 20 - 60

ControlDisplay x-axis 65 50 120

RecDisplay y-axis autoscaling: RecDisplay.TrackYMax(true);
 RecDisplay.TrackYMin(true);

After these definitions, the expression test can be initiated.

After starting the recording, two transmit commands are executed to send the right information
about the compound used to the database and to link this information to the actual recording.

Robo2.TransmitRecording(REC_TAG_REF_COMPOUND); tags the recording as a reference
recording which means that the result will not be used for dose-response fitting in Roboocyte2+.

Robo2.TransmitCompoundValve(reference); transmits the compound name and
concentration to the database. This of course only works when the right entries have been made
to the Liquid Configuration in the Roboocyte2 program.

pre_agonist_s seconds after recording start, the valve reference is opened. Then after
agonist_s seconds valve 1 is opened and after another recorded_washout_s seconds the
recording is stopped.

Then, after calculating and typing the baseline-subtracted response into the log window,

Appendix

29

the response can be compared to the values assigned to the user-defined variables minResponse
and maxResponse the result of which determines whether the script continues at line 297 or is
stopped and continued with the oocyte from the next well.

Example1: Negative response expected (inward current)

Condition: if (signal > minResponse || signal < maxResponse)

maxResponse = -10000

minResponse = -200

signal = -100 ==> signal > minResponse ==> next oocyte

signal = -12000 ==> signal < maxResponse ==> next oocyte

signal = -5000 ==> signal > maxResponse and signal < minResponse ==> script proceeds

Example2: Positive response expected

If the expected response is positive (outward current) operators < and > have to be exchanged.

Condition: if (signal < minResponse || signal > maxResponse)

maxResponse = 10000

minResponse = 200

signal = 100 ==> signal < minResponse ==> next oocyte

signal = 12000 ==> signal > maxResponse ==> next oocyte

signal = 5000 ==> signal < maxResponse and signal > minResponse ==> script proceeds

3.2.2 Dose-Response Protocol

After the oocyte has been tested successfully for sufficient expression and stability, the recording
protocol continues with the does-response recording part of the script. Before the dose-response
recording starts, the usual axis scaling and ROI definition commands are applied.

If the application of different agonist concentrations steps sequentially from valve a to valve a + 1
a for loop can be used.

Roboocyte2 Manual

30

The loop variable is the valve number, starting with the user defined variable first_compound and
ending with last_compound.

If needed, a leak test can be placed before the application of every agonist application.

If the leak test fails, the message "leak current is not in range - next oocyte" is send to the log
window, all pumps and valves are switched off and the protocol continues with the next selected
oocyte. The break command in line 331 terminates the execution of the loop and the script is
continued after the end of the loop at line 365. The curly bracket in line 368 designates the end of
the oocyte loop, which means that the script will continue with the next selected well/oocyte at
line 89.

3.3 Voltage-gated Ion Channels

Because the external trigger for activating voltage-gated ion channels is usually a change in
membrane potential and not application of an agonist, protocols usually concentrate on voltage
changes instead of solution exchanges. Of course, voltage protocols and solution exchanges still
can be combined in a script; e.g. to modify the activity of voltage-gated ion channels by
application of different compounds.

3.3.1 Expression Test

The detailed design of an expression test will depend on the channel properties, but will always
have a qualitatively similar structure: A voltage step from a potential at which the channels are
inactive to a potential which activates the channels will be applied. The script
"expression_test_vgic_part.js" used here as an example can be found on the Roboocyte2 CD.

First, new variables should be defined. This part can be moved to the beginning of the script.

Secondly, axis scaling and ROI position are set. Using the variables from above guarantees that
scaling and ROI automatically change whenever the pulse timing is changed.

Appendix

31

The analysis ROI covers the whole duration of the voltage (test) pulse except the first 10 ms in
order to avoid interference with the capacitive transient caused by the voltage jump.

Next, the recording is started.

The sequence generates the following voltage jump:

a. Start the recording b. 100 ms at -60 mV

c. 200 ms at +50 mV

d. 200 ms at -60 mV e. Stop the recording

Finally, the current amplitude elicited by the (in this example depolarizing) voltage pulse is sent to
the log window, and

the signal is compared to the user-defined limits minResponse and maxResponse. If the elicited
signal is positive (outward current), the condition

if (signal < minResponse || signal > maxResponse)

should be used.

If the expected signal is negative current (inward current) the operators > and < have to be
exchanged.

Voltage Protocols (IV-dependencies)

Roboocyte2 Manual

32

Although voltage step protocols can be defined line by line with the script language, voltage
protocols should be generated by the built-in graphical user interface (GUI). Please refer to the
Roboocyte2 manual for details.

Appendix

33

4 Using the Gilson Liquid Handler

Commands controlling the Gilson liquid handler can be separated in movement commands,
commands controlling the peristaltic pump connected to the Gilson liquid handler, and commands
controlling the magnetic valves of the Gilson's transfer ports. If you are using the liquid handler,
scripts have to be modified, using Gilson commands instead of Roboflow commands.

Important note: Racks (and corresponding slots) used in a specific script have to be defined and
selected by means of the Liquid Configuration feature of the Roboocyte software. Otherwise the
script will not work.

4.1 Movement Commands

Gilson. Parameter(s) Action

MoveToTube(x,y) int: x = slot

int: y= tube

moves the probe to tube y in slot x (1 .. 5);
the number of available tubes depends on
the type of rack

MoveToPort(x) int: port number (1 or 2) moves probe to transfer ports x (1 or 2)

MoveToRinse() --- moves probe to the rinse station

MoveToDrain() --- moves probe to the drain station

MoveUp() --- moves the Gilson probe up

MoveHome() --- moves all to home position

Reset() --- resets the Gilson

The "movement commands" move the Gilson probe (needle) in x, y, and z direction either to
tubes, transfer ports, rinse station or drain station or just up (z-axis) or home (x = y = z = 0). The
Reset command can be used to "reset" the machine, e.g. after some kind of malfunction, and is
usually not used in a script.

4.2 Peristaltic Pump Commands

PumpBackward(x) int: x = speed starts the Gilson peristaltic pump in
backward direction with speed x

PumpForward(x) int: x = speed starts the Gilson peristaltic pump in forward
direction with speed x

Gilson.PumpStop() --- stops the Gilson peristaltic pump

Whenever the Gilson liquid handler is used, the Minipulse peristaltic pump will be used. This
pump will be then controlled by the Roboocyte software with the script commands listed above.

4.3 Transfer Port Valve Commands

Valve1On() --- opens valve 1 from transfer port

Valve1Off() --- closes valve 1 from transfer port

Valve2On() --- opens valve 2 from transfer port

Valve2Off() --- closes valve 2 from transfer port

Roboocyte2 Manual

34

The transfer ports offer you the option to work with larger solution volumes, e.g. for often used
buffers or compounds. Using the transfer ports would mean moving the needle to the transfer
port with the respective movement commands, opening the respective valves with the commands
listed above, and finally switching the Minipulse pump on to aspirate solution from the transfer
port.

4.4 Examples

Scripts that were written for using the Roboflow can be easily modified to work with the Gilson
liquid handler instead. The following examples demonstrate how Roboflow solution exchange
commands correspond to those of the Gilson liquid handler.

1. Opening a Roboflow valve corresponds to moving the Gilson needle into a tube or transfer
port.

2. Turning on the Roboflow valve pump corresponds to starting the Minipulse pump in backward
direction.

4.4.1 Differences between Roboflow and Gilson

1. Instead of using a manifold the Gilson liquid handler connects the different solution reservoirs
and the measuring head with a single tubing. Therefore, an air gap has to be formed between
two different solutions in the tubing to avoid mixing during transport from the probe to
measuring head.

2. When using Roboflow, there is a delay of 2 to 3 s between the solution exchange command in
the script and the arrival of the solution in the well (i.e. at the oocyte) when using pump speed
5000.

When using the Gilson liquid handler, this delay is much larger due to the tubing length between
Gilson probe and measuring head. Depending on tubing length and the selected pump speed of
the Minipulse pump, this delay can be tens of seconds and has to be considered in the design of
the script.

4.4.2 Solution Exchange - Roboflow vs. Gilson

Defining a solution exchange sequence where solution1 runs for 5 seconds, followed by solution 2
for 10 seconds and finally solution 1 for 10 seconds will be realized by the following sequences of
script commands.

The following table shows how Gilson commands correspond to Roboflow commands.

 Roboflow Gilson

 Robo2.OpenValve(1); Gilson.MoveToTube(1, 1);

 Robo2.ValvePumpOn(5000); Gilson.PumpBackward(2600);

 Robo2.Wait(5); Robo2.Wait(5);

solution separating air gap
(Gilson only)

 Gilson.PumpStop();

Gilson.MoveUp();

Gilson.PumpBackward(2600);

Robo2.WaitMilliSec(600);

Gilson.PumpStop();

 Robo2.OpenValve(2); Gilson.MoveToTube(1, 2);

Gilson.PumpBackward(2600);

 Robo2.Wait(10); Robo2.Wait(10);

solution separating air gap Gilson.PumpStop();

Gilson.MoveUp();

Appendix

35

Gilson.PumpBackward(2600);

Robo2.WaitMilliSec(600);

Gilson.PumpStop();

 Robo2.OpenValve(1); Gilson.MoveToTube(1, 1);

Gilson.PumpBackward(2600);

 Robo2.Wait(10); Robo2.Wait(10);

Same sequence from above listed sequentially.

Roboflow

Robo2.OpenValve(1);

Robo2.ValvePumpOn(5000);

Robo2.Wait(5);

Robo2.OpenValve(2);

Robo2.Wait(10);

Robo2.OpenValve(1);

Robo2.Wait(10);

 Gilson

Gilson.MoveToTube(1, 1);

Gilson.PumpBackward(2600);

Robo2.Wait(5);

Gilson.PumpStop();

Gilson.MoveUp();

Gilson.PumpBackward(2600);

Robo2.WaitMilliSec(600);

Gilson.PumpStop();

Gilson.MoveToTube(1, 2);

Gilson.PumpBackward(2600);

Robo2.Wait(10);

Gilson.PumpStop();

Gilson.MoveUp();

Gilson.PumpBackward(2600);

Robo2.WaitMilliSec(600);

Gilson.PumpStop();

Gilson.MoveToTube(1, 1);

Gilson.PumpBackward(2600);

Robo2.Wait(10);

Synchronizing this sequence with a recording is straightforward when using the Roboflow; put
the command Robo2.StartRecording(); and Robo2.StopRecording(); before and after the
sequence of commands, respectively.

4.4.3 Handling of the Gilson Delay

When using the Gilson liquid handler, the significant delay between switching to a respective
solution and its arrival at the oocyte has to be considered. There are different ways to include this
delay, but the easiest way is to add an additional wait command Robo2.Wait(delay); directly
before the Robo2.StopRecording(); command. The delay time depends on the used Minipulse
pump speed and the length of the tubing between Gilson needle and measuring head. Therefore,
delay time has to be determined experimentally beforehand.

Usually, buffer solution (solution 1) is already running before starting a solution exchange
protocol. Therefore, the sequence after the Robo2.StartRecording(); command starts with the
first wait command Robo2.Wait(5);.

In addition, the respective transmit commands have to be included in order to send the
appropriate compound and concentration information to the database.

Likewise, ROIs have to be defined in a way that the response of interest will be localized within
the ROI.

Roboocyte2 Manual

36

Roboflow

-->Robo2.OpenValve(1);

-->Robo2.ValvePumpOn(5000);

Robo2.SetBaselineROI(2,5);

Robo2.SetAnalysisROI(5, 15);

Robo2.StartRecording();

Robo2.TransmitRecording(REC_TAG_COMPO
UND);

Robo2.TransmitCompoundValve(2);

Robo2.Wait(5);

Robo2.OpenValve(2);

Robo2.Wait(10);

Robo2.OpenValve(1);

Robo2.Wait(10);

Robo2.StopRecording();

Gilson

-->Gilson.MoveToTube(1, 1);

-->Gilson.PumpBackward(2600);

Robo2.SetBaselineROI(2+delay, 4+delay);

Robo2.SetAnalysisROI(5+delay, 15+delay);

Robo2.StartRecording();

Robo2.TransmitRecording(REC_TAG_COMPOU
ND);

Robo2.TransmitCompoundGilson(1, 2);

Robo2.Wait(5);

Gilson.PumpStop();

Gilson.MoveUp();

Gilson.PumpBackward(2600);

Robo2.WaitMilliSec(600);

Gilson.PumpStop();

Gilson.MoveToTube(1, 2);

Gilson.PumpBackward(2600);

Robo2.Wait(10);

Gilson.PumpStop();

Gilson.MoveUp();

Gilson.PumpBackward(2600);

Robo2.WaitMilliSec(600);

Gilson.PumpStop();

Gilson.MoveToTube(1, 1);

Gilson.PumpBackward(2600);

Robo2.Wait(10);

Robo2.Wait(delay)

Robo2.StopRecording();

Alternatively, you can work with the script commands Robo2.StartTimer(); and
Robo2.WaitForTimer();

